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Pointer Adaptation and Pruning of Min–Max Fuzzy
Inference and Estimation

Abstract—A new technique for adaptation of fuzzy membership
functions in a fuzzy infercncc system is proposed. The pointer
techniqne  relies upon the isolation of the specific mcvnhership
functions that contributed to the final decision, followed by the
updating of these functions’ parameters using steepest descent.
The error measure used is thus backpropagated  from output
to input, through the min and max operators used during the
inference stage. This occurs because tbe operations of min and
max are continuous differentiable functions and, therefore, can
be placed in a chain of partial derivatives for steepest descent
backpropagation  adaptation. Interestingly, tbe partials of min
and max act as “pointers” with the result that only the function
that gave rise to tbe min or max is adapted; the others are not. lb
illustrate, let (~ = Inax [~1. J2. . ~,v]. Then 0(1/i~~,, = 1 when
~,, is the maximum and is otherwise zero. We apply this property
to the fine tuning of membership functions of fuzzy min-max
decision processes and illustrate with an estimation example. The
adaptation process can reveal tbe need for reducing the number of
membership functions. Under the assumption that the inference
surface is in some sense smooth, the process of adaptation can
reveal overdetermination of the fuzzy system in two ways. First,
if two membership functions come sufficiently close to each other,
they can be fused into a single membership function. Second, if
a membership function becomes too narrow, it can be deleted.
In both cases, the number of fuzzy IF-I IIm rules is reduced. In
certain cases, the overall performance of the fuzzy system can be
improved by this adaptive pruning.

Index Terms- Adaptive estimation, adaptive systems, fuzzy
control, fuzzy sets, fuzzy systems, intelligent systems, knowledgc-
based systems.

I. IN1’RODUC1  K)N

M ODERN decision theory has been very successful in
coping with problems where the system and its struc-

ture h~i\’e been well defined; n~tiibly in cases where good inlor-

ma(itm ab(mt the environment iimi an adcL]uate mathematical
rmdel ~~f the system under control have been available. I’his
remarkable success in the anirlysis  of mc(hcitli.stic systerms;
i.e., systenls  governed by Ltiffcrence, differential, or integral
equiitions, has perh;ips  partly contributed to the belief that such
analysis techniques c~in be iipplicd  equally well to complex
hunmn-cenkred systems, In his now CliISSiC paper on the
foundations of fuz~.y systems and decision processes [ I],
Z[idch takes issue with this point of view in his statement
of the principle of itt(’(~ttl[)(zti[)ility,  stating thiit:

As the complexity of il system incre~ises,  our iibility to

miike precise and yet significant statements about its
beh:ivior diminishes until a threshold is reiichect beyond
which precision and signiticilnce (or relevance) become
almost mutually exclusive chmicteristics.

Consequently, over the years a number of iilter[~iiti~e control
schemes, for instance techniques employing neural networks or
fuzzy sets, h:i\’e been proposed and implemented [2], [3]. We
provide ii brief discussion of relevant topics of fuzzy systems
:ind control here to motivate our approach.

A .  F’u::y .Ycts

A fuzzy subset ,4 of a universal set .1 is char~icteri?.ed  by
:i n)en~bership  function ~l.l(. r) which assigns a ttiil number
in the closed interval [0, 1 ] to every element of .Y [4]. I’his
number //4(. r ) represents the grade of membership of element
J in set .1, with larger values of it denoting higher degrees
of set rnernbersbip. 1

For example, we can define :1 possible membership function
for the fu77y  set of re;il numbers near zero in the following
way:

1
[/..\)./’) ~ i , jo,r,.2 (1)

The n~en~bcrship  grzide  of each real number in this fu~~.y set
thus represents (he degree to which that number is close to 0.

We define  ;I,fi/;cy ~wt-iablc ii~ a V:iriiit)le  that can be described
by ;i number t~f different fu/./y sets. For instance, if we have a
fu~ly viiriable den(~ted by /~ci~hf, then it coulLI  be descrihwt ;i~
t:ilt, very tall, not tiill. eru. Norc that the values that hci<qll[ c:In
take (m can bc crisp (well defined and tixed); such as when
we s;iy that a pcrs~m’s  hci~ht is 2 m. tIowe\er,  a person with
that height ctmld be described  as 1~/]/ in a t’uz/y w;Iy.

{ :\ llllllt”U  //) (C. [!, [)) .L, [ .J1\, [tlL,  tL~f[!f L%, h< $ lLWLII .IS ,1 rL\(ll  LIL<! L.l\L. ill .1

liI//) v-.(, Nh<,rc tlk “1ll..l llt><l. tllr>” tUllLt!<lll /1 \ !ll.lp\ CIL.  [11..l1[\  11( [il.. 11[1 I\ L.I.  V
(>I dl.ccj~lr.c ICI III.. wr (~1. I }
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Various set operations c:in bc defined On fuzzy sets, just
as the crisp set case. For instance, it is common to denote
inter-section of two fuzzy sets by the “minimum” operation
applied to the two corresponding memberships functions:?

C == “1 1-111 => p~.(.r)

= 1(.wl[)(.r)

= m i n  [jl..~(.r),  ~lfj(.r)] V.r E .Y. (?,

Similarly, the union of two fuzzy sets can be represented by
the “maximum” operation. These operations are not unique.
Of her operators for performing fuzzy intersection, union, and
complernentation  exist [5]. However, the ~nitl and tnax opera-
tions are special in the sense that they are the only continuous
and idempotent  fuzzy set intersection and union operators,
respectively [5].

b. FUZZ-Y  Inferertce

Fu77,y  inference is based on the concept of the fhuy

mmlitioml statemenf:  IF A THEN IJ, or, for short A + IJ,
where the antecedent A and the consequent l] are fuzzy sets.

A general fuz7.y  inference system consists of three parts
(see J’ig. 1). A crisp input is fuz7.ified by input membership
functions and processed by a fuzzy logic interpretation of a set
of fuz7.y  rules. This is followed by the defu77.ification  stage
resulting in a crisp output. The rule base is typically crafted
by an expert; though self organizing procedures ha\’e been
suggested [6]–[15].

There are a number of different ways to implement the
fuzzy inference engine. Among the very first such proposed
techniques is that due to Mamdani [ 1 I], who describes the
inference engine in terms of a fu7.7,y relation matrix and uses
the compositional rule of inference [ 1 ] to arrive at the output
fu7z.y set for a given input fu7.7.y  set. The output fuz7.y set
is subsequently de fuz.zified to arrive :it a crisp control action.
Other techniques include sum-pr(xJuct  and threshold inference.
A re\Jiew of these is given by IJriank~w et (Il. [ 16).

{“. Adl~ptati[)tl itl F’UYZF l)~ji)retlce $ystettl.~

All of (he stages t~f the fu7.~.y inference system are affected
by the choice of certain parameters. A list tt)llt)ws.

~ 111111(11, /)) : (1( /J) II II < /)((/  > /))

Ihc  /’{(:; (/i(r: ‘Ihc tu//.iticr  in Fig. I maps the input ont{)
the ~xmtinutm$  interval 10, I J and has the f’~)ll~~wing  parameters:

I ) the rtumbcr  of membership functions;
2) ttw shupe of the membership !’urrctions  (e.g., triangle,

C,aussian, etc.);{
3) the central tendency (e.g., center of muss)  and dispersion

(e.g., skindard deviation, bandwidth. or range) of the
membership function.

‘/’/w /t/feretwe Engine:  The inference engine is the system
“decisionmaker” and determines how the system interprets the
fu7,zy linguistics. Its parameters are those of the aggregation
operators which provide inteqxetation  of connective “AND”
and “{m. ” An example of a parametrized union operator is
the Yager union [17]:

Illill [1. ((l’” -} l~{’’ )1/’”],

where the inputs are membership values o and b, and the
parameter 1(J riirr,ges over (0. ~ ).J

The [)efhzzijer: The de fu7.zification stage maps funy con-
sequent into crisp output values. Its design requires choice
of the following:

I ) the number of membership functions;
~) the shape of membership fUnCtiOnS;
3) the definition of fuzzy implication, i.e., how the value

of the consequent from the inference engine impact the
output membership functions prior to defuzification.

4) a measure of central tendency of the altered consequent
output membership functions. The center of mass is
typically used, although medians and modes can also
be LISed  to arrive at the crisp output.

It is, thus, seen that both the fuzzification  and defuzzification
st:iges  require choices of cardinality, position, and shape of
membership functions. The defuzzification  operation itself can
be parametrized, and the inference engine requires choices to
be made arrmrrg numerous fu7.zy aggregation operators, which
can be parameteri7,ed.

All of these parameters can be adaptively adjusted by mon-
itoring a certain target performance measure in a supervised
learning environment. Over the years numerous techniques
for adapt:ition of fuz7,y membership functions, rule bases, and
:Iggreg:ition  operators have been proposed. These techniques
include the following,

● Procyk and Mamdani’s  self-organi7ir~g  process controller
[6] which considered the issue of rule generation and
adaptation.

● Numerous methods involving the performing of steepest
descent on the centroid  and dispersion parameters of
input and output membership functions [ 18]–[23]. Other

1,\\ u \i[I\plc CX.)IIIPIC ,)i LI p.kr,lnlc[<r!{cd nlcn}hcr.hlp  function  Sh.lpe,
c{,n.ld~.r  IIw  rllcnlhcr.hlp iunc. t!,  m

l((l. l,)= (l-l ll)’’ll! (3)
~

utk.lc [1( I /2) - I I(II I I I < 1 dn,l I\ /CILI, [Ithcrul.c, f~m 1, = 1. (3)
I\ [he l.!llilll.lr [11. IIIglc t’UIILr I, III WI IIIC. It,r i, = ( ) ,  It Ii d r..cl.lngular  (cr!.pl
n\Lv(hv\l)lp t’unLrl<,  !l A\ ), —. k , (tic luIIct  ItIn (I( I I,),  b} [he ccnlrcll Ilnlit
[llcw)r~lll, hccc,r!k>. (;.  IU..I.III In ,h.i[w  (wl[h  tcr<l v.rdth)

‘11111,, . 1,,1,1 [l. ((/” +  /!” )Ii’ ] = 1,1,, <(({,  /))
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algt~rilhms such as ramhml search and c(mjugatc gradiclit
descent can be used in tuning such parameters as well.
f]runing the number  t~t’ i n p u t  a n d  (Julput  nwlnbc.rship
functions (see Scctitm IV, and I 141, [24]).
Adapting the shape of’ nwmbership  l’uncti(ms (SIX to{~tn~~tc
3),
Adaptation ot’ AND/OR iiggregation operators. I’his  ctmld
occur when the expert designing the rule baw is satis-
fied with both the cardinality and shape of membership
functions, as well as the setting up of rules (see [25]).

A bibliography of these techniques is available [251.  In the
next section, we provide the necessary mathematical back-
ground for understanding the pointer adaptation process, wJhich
is considered in Section III. We describe the adaptation process
and demonstrate via a number of examples. Section IV ex-
pands the discussion by taking a closer look at one of the
artifacts of adaptation (or initialization of the rulebase), which
is a possible overdeterrnination of the fu7.zy system. Tech-
niques to overcome this problem in the context of adaptive
inference are provicled and verified by examples.

Il. pREllMrNARIf:S

Fuzzy membership functions chosen for a control or de-
cision process may require adaptation for purposes of fine
tuning or adjustment to stationarity  changes in the input data.
Use of neural networks to perform this adaptation has been
proposed by Lee et al. [ 18]. Other techniques proposed can be
found in [20]–[23]. Our method more closely pamllels that
proposed by Nomura,  Hayashi,  and Wakarni [22]. In their
work, membership functions are paran~eteri7.ed and steepest
descent is performed with respect to each parameter using
an error criterion, in order to obtain the set of parameters
n~inin~i7ing the error. To straightforwardly differentiate the
error function with respect to each parameter, they used
products for the fuzzy intersection operation. The output
error backpropagated  this way, was used to adjust the fuzzy
membership functions.

Here, we show that the more conventionally used n]inirnurn
opemtion  for fuzzy intersection and nlaximum  operation for
fuzzy union can be similarly backpropagated.  Unlike the
method of Non~ur:iet  al., which updates all fu?.z.y membership
function parameters in each stage, the pointer method proposed
herein results only in the adjustment of the fu7.7,y  membership
functions that gave rise to the control action or decision output.

A. Differetltiation  ofmitl atrdttwx Operatiotl.~

Differentiation of the lllir~ or rllj~x operations results in
a “pointer” that specifies the source of the minimum or
nlaximum, To illustrate, let

[(? = rll; lx /f, . /&, . . . . /l,y]
.V

(4)

JT:.  l t+lr

w’here (~(.), a unit step function, i s  1 Itw positive  :Irgunwrrts
and ii ~,cril o therwise.  Note th:lt the [r);lx  operator”  in (4) is

1

0

-;

-1 -1
(.1)

(b)

continuous and can be differentiated as

-{

1: if [),, is maximum—
0: otherwise

(5)

This result is also intuitively satisfying. Only one of the /;,.
let us say a certain @,L, in (4) is the n~aximurn. Differentiation
with respect to this number then (when o = f~,l), should result
in a 1, and differentiation with respect to any other number
should be zero.

In a similar way, let

(6)

The I!lirl function is also continuous and

{

1; if -y,,  is minimum-.—
(): otherwise

(7)

Indeed, any order statistic operation (e.g., the third largest
number or, for .\’ odd, the median) can likewise be dift’eren-
(iated.  In each case, the partial derivative p(}ints to index of
the ~mler statistic.

Ill. Fu7/.Y MI X- - MAX EA’I’r\lA~K)N

To illustrate a d j u s t m e n t  O! fu//y nwmbership  functiorr~
by steepest descent,  ctm~ider the tu/./y estirnati~m problcm
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21 NH NM NS NZ
I ‘z~~z

NH

B

PM M NS NM Nt4 NS es Pltf
NM PH PM Ntl NH NH NH PM  PH
NS PH PM N!l NH NH NH PM PH

NZ PM Ps NS Nf4 NM Ns ps PM

-Fz-- NM NS Ps

Ps NH NH

PM NH NH

PH ‘; : ZEEENH NS Ps

(a)

(b)

Fig. 3. Initial membership func(ions for. (a) .II . ,IZ and (b) ~(.I I. .rj). Here,
NH E negative high, NM E negative medium, NS z negatiw small, NZ. =
negative zero.  PZ = positive zero, . . .

illustrated in Fig. 2. We wish to generate an estimate J(rl, 12)

of a target function f(~l, rz) using a set of fu7.zy IF . . . THEN

rules. Here we have

t(.rl, .rz) = sin (7r.rl)  cos(7r.rj). (8)

The rule table (Table I) is generated by partitioning the
d o m a i n  o f  f(:r,,  rz), {(Y1,  02)l:r1 E [--1. 1], .rz  c [ - 1 ,  1 ] }

into 64 (8 x 8) regions and assigning a fuzzy membership
function to each region in accordance to the values of t(.rl, rz)
in that region. For instance, if t(~l, .rz) takes on values close
to I in certain regions, then the membership function used
for those regions of the domain will be “positive high” (PH).
Initial membership functions for f are thus formed in this way.
The values of .rl and .rZ are fuzzified in a similar manner.
The initial membership functions chosen are Gaussian and are
shown in Fig. 3 for .rl,  .rz and j(.rl, J’z).

TO illustrate, consider the fu7.7y IF . THEN rules with a
positive medium (PM) consequent. These are highlighted in
Table 1. Reading from left to right from the top of the table,
they are:  IF .rl is Nfl AND .r2 1s NtI Of?  IF .ri is Pll A N D

.r2 is NtI OR IF/I is NM AND.rZ  is NM OR . .
IF .rl is PZ A N D  J’? is P} I TFIEN f(.rl, .I’v) is P M .

Similar rules exist for the other five categories of ~.

(w)

A .  Ftwlforwwrd  Proctdurta

For purposes ot’ tinalysis. let the membership functions for
the variable .rl be denoted by /t\, i = 1, 2, ., N, those for
the vari:ible  .rz by //~, j = 1.2, , 1[,  and those for the
output variable J by it!, k = 1, 2. “” “, ~.

For a given output membership function \t$, the rules, as
shown in Table 1, are of the form:

If 11 is p; and .rj is It; OR

If .rl is ILf and .rj is 1~~’ OR. . .

Then ~ j is jl~.

Let us define a set Sk as follows:

Sk = {1, 7t11~1~ and /L~L  are antecedents of a

rule with consequent iL$ }. (9)

The operations to arrive at the output are as follows.

1)

2)

3)

Perform a pairwise fuzzy intersection (e.g., minimum or
outer product) on each of the membership values of rI
and .12 in It; and P;’ for every mle with consequent /L!T
forming activation values (:

(lo)

Collect activation values for like output membership
functions and perfom~ a ftrzz.y  union (e.g., maximum).

These values are defunified  to generate
estimated value, j($l, 72), by finding the
the composite membership function IL:

~u)kwl,

f(.r’, , J2) = ~*---–

~wkAk
k=l

where

A~ =
/

/f:(.r’)  (h,

(.L . L–————

I p~(.f’)  d.r

(11)

the output
centroid of

(12)

(13)

(14)

(15)

zl~ and C~ are, respectively, the area and centroid of the
consequent membership function pi.



.,.

7(HI 1111. ll<\Ns/\(’’lloN$ ON  ( ’ 1 1 <  (’(11s \Nl)  s}\ll.kls II  .\N\l  ()(; ,\Yl)  I)l{; ll.\( sl(; N.\l, l’K()(’},\$l N(;,  Vol 44, N() ~), s! I“ll,hll!l R II)(J7

B~/tk/)r~)/)t/~~t(i~)rl  Adjusmenf: Eixpert heuristics are typi-
cally used to specify the membership f’uncti(ms l~)r the input
(.I’1, ,rz ) and output (~). These functions can be adapted or
fine tuned using supervised learning. “1’he steps tt~ adapt the
input membership functions are as follows.

We first form the error function by taking the squared
difference between the estimated output J, and the desired
target value /:

Assume now that we wish to update parameters of a Gauss-
ian membership function that appears either in the antecedent
or the consequent of a rule. Denote these parameters by tl~~ [r]
and the corresponding membership function by /~;. In our
example, for 1 = 1, 2, the index i := I, 2, ~ . . . 8 and for
1=3, theindexi=l,2,  , 6; q = 1,2, and

{

(J’ - ,nj[l])*
//; (.r’) = Cxp

}m5~J  -  “
(17)

For instance, m; /1 ] would represent parameter number 1 (of
2) of nlenlbership  function number 7 (of 8) of tbe variable .12.

The steepest descent update rule is

d ))’
7)/;  [q] +-= ?n;  [q] – n ;– -;--

dml  [q]
(18)

We have, for the general case

13J; 3E K–x( Of aul~

)-”----

U/lj
— — . —.—.  —

thn;  [q] = af ~=, sulk 0//;
(19)

:)/)1;  [q] “

This in turn can be written in the following way [see ( 10)
and (11)]:

(20)

From (5) and (7), and referring to ( 10) and ( 1 l), we obtain:

(21)

(22)

where fill,  the Kronecker delta function, is equal to one for
zero arguments and is zero otherwise.

Substituting the above two equations in (20), we obtuin

The two Kronecker deltti functions now serve to isolate the
men~hcrship  function whose paranleter  is being  updated, Other

~L-u
02 04 06 08 I

o
.’

‘/
,.(

,’

W“ \ M’ .x “’..:::
-~,:.’. . . . . .

“-1 -08 -06 -04 -02 0 02 04 06 08 1

(c)

Fig.  4. F’lnal  mcnihcr~hip  functions for (a) ) I . (b) f j. and (c) ~(.ri , .I z ).
Ilcrc N}l  E negative  high, Nhl : negative  medium, NS E negative small,
NZ ~ ncgtitive  ?cro.  P7, s p o s i t i v e  zero,  . .

membership functions that are not used in the decision process
are not adapted. Equation (23) finally simplifies to

where
Ii

In general, II; is a function of many parameters mj [q],
q= 1. 2,.... For our estimation problem, using Gaussian
membership functions, there are two parameters to adapt.
These are the mean (rnj  (1]), and the variance (~lL~ [2]). We
thus have

B. Kt’.sult.s

(27)

We present here results of the application of this technique
to the estimation problem discussed in Section [11. Fig. 4
illustrates the input and output membership functions after
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Fig. 5. Result of E’u?/y e s t i m a t i o n .  (a) 3-1)  plot. (b) Cm[nur  plot. of
the e s t i m a t e d  signal  ~(.rl , .12)  = sill ( T. I , ) I(IS ( T I ~ ) over  the donlain

{(J’1. ,1”, )11’1 e [ - 1 .  1 ] .  .1,  c [ - 1 ,  l ] } .

I adaptation and Fig. 5 shows the (much improved) estimation
r e s u l t

I I V .  ADAFWVE  PRLJNINGOF  FLJZ7.Y  INF’ERE;NCE SYsmMs

As we have shown, the parameters of the input and output
fuzzy membership functions for fuzzy IF–TtIf:N  inference can
be adapted using supervised learning applied to training data.
The specific case of adaptation of rein- max inference using
steepest descent has the advantage of adapting only those
membership functions used in the fuzzy decision process for
each training data inpu-output  pair.

In the process of adapting, two membership functions m:iy
drift close together. If the underlying target surface which we
wish to estimate is smooth, then the membership functions can
be fused into a single membership function. Alternately, if a
membership function becomes too narrow, it can be totally
deleted. In either case, the fumy decision process is pruned.
In artificial neural networks, pruning neurons from hidden
layers can improve the performance of the neural network [26].
Likewise, the performance of fuzzy inference can be improved
through the adaptation and pruning of membership functions.
The number of ll:-TIIEN rules is also correspondingly reduced.

Assume that the center of maw of l~j (membership function
i of input variable .r I ) is Ir/’l [ I ] and the dispersion (spread) of
il~ is parametrized by ///i [2]. The parameter ~))i [2] is also pro-
porfi(mal  to the areti of ~lj. The membership functions 1~~ (for
input .rl) and j~~ (for the output) are likewise parametrized,

/

3+Y —-=> N ?- P
z 2 P
P N Z-

—.

TABLE: 111
Wt{t x ?t{l  Aft \l[{l  K$ ’ t i l t ’  f’L’v[’lloN  K)R ),;  = z IN THE  Lwr  ‘f’ABl  F IN

1’.+M F II  1$ A~NIHll  ATt  II. THt  R(’I F 1 AN t Stiouh  tlFKf RF fL[.TS

aEx N_i P
Y
N 27P
P NiZ

33Y 1 2 3
r
1 131
2 2 3 2
3 1 2 1

IABI.F, V
RLU F TAHL F FOR EkAhlPl F i

v 1 2 3 4 5 =_78 9 10 11
.. 1 I I 1 I I I I I I I
1 11111[21313[3121 11111
2 1 1 2 3 3 3
3 1 2 2 3 3 FI 3
4 2 3 3 4 4 5 1 4  413 r-312
5 I 313[31415]515]  413  ]3]3

6 1 3 1 3 1 4 1 5 1 5 1 5 1 5 1 5 1  41313
7 I 313]  3]41515 5 4 3 3 3
8 2 I 3 1 3 1 4 1 4 1 5 4 4 3 3 2

3 2 1 1 1
1 1 I 1 1 ,

9 1 1 1 2 3 3
10 1 1 2 3 3 313[3]211]1
11 1 2 2 3 3 41313121211

If the output membership functions are jl~, then the defuzzi-
fied output using the center of mass of the sum of weighted
output membership functions is

~, = _!-. . . . . .

E (~hffzi
(28)

Although we will use min-max inference, the pruning
procedure described below can be applied to other fuzzy
inference methods, wherein, for example, alternate forms of
defuzzification  are used or intersections and unions other than
r[lin and IIMLX  are employed [5], [27].

}Ierein,  we will assume all linguistic vari:tbles are scaled
to the universe of discourse on the interval [–1, 1]. Gaussian
membership functions of the form

/((./’) = (X[)

will be used throughout (II)

~

“(--- )].1’ – r))

Jx f
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A .  Metnber.~tlip F’wrtiotl  F’u.sim
are I/~ L and ~r~~. then the me:m of the fused membership is
set equal to the center of IWISS  of the sum of the membership

Fusion of two membership functi(ms  occurs when they functions

become  sufficiently close to each other. Annihil:ition occurs Itt ,fl~ -t rtljfv

when a membership functitm becomes sutticicntly n:um)w.  As
Irlf,,., t,l, = - 0[ + fl~

illustr;ited  in Pig.  lo, two membership funct ions  :~re fud
when the suprcmun~ of their intcrsecti~~rl exceeds  :i thrcsh<)l(l,

where m I :In~~ 0 :~r~

~. It the metins of the membership functions prior to fusion
membership Iunc(i(ms.
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function is obtained from

~ ~: + n:;
~f,,. !(,,, ‘- –

0[ + fi:>

Membership fusion ha~ a direct impact on the fuzzy decision
prt)cess, 1’0 illustrate, consider Table 11. tlcre, N T- neg:ltlve.

Z = near mrx), and f’ = positive. Assume that the membership
Iunctions l’t)r f corresponding to N and Z Iuse. The two
Iclt most columns (Jt’ the rule t:lble arc c(m~bincd  intt) one.

A ncw linguistic variable, called iVZ labels this column. It
remains to specify the corresponding rules. When two adjacent
rules are the same prior to fusing. the answer is simple. For

example, since .~, = ~Ir and Z both have Z as a consequent
f~~r }; = Z, the clear choice for tttc fused rule table for
!’ = .Y Z and )’, = Z is  the consequent X. For 1; = N.

ht~wever,  there arc ditl’erent consequent when .Yt = ~ and
.Y, = Z. To determine the consequent for’ .K, = ‘Z and
~’, - -  .V (nmrlwd “’?” in Table II), we chose to query the
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training data base. Specific:illy, tr:iinirlg  dato was ltmnd where
(r. !/) = (J,t.vz.  rll,~ ). ~’he V:lllle 0! the target, /, for this

input p:iir is cmnpared  t{) the means of the existing outpllt

nlcnltmrship functions. The membership function h:iking  the
cl~lses[ nlefin is ;Iwigned as [he C(JIl\CLILICIlt.

output  membership functi{ms C;ln :IlstJ f’use.  it, t(M ex:~nlp!c,
[he ~m[put  Z tuses with N in the Icf’-hard  rule  table in
Tiiblc II, the resulting [used rule [able will pl:ice Y Xs in the
six b{~xcs  currently {wcupicd with Zs (Jr .Vs.
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l{, (r), when, for all J,

O]pl (.1”) 2’ /kr2p2(. r)

where Jj > 1 parameteriz.es  the degree of insignificance }Iigh
~~ corresponds to a severe criterion for annihilation. It is
sufficient for the above criterion to hold only for .r = rI/2

al Pl(?J12) 2 /~rr2/12(rtt2)

=: [lrr~ .

The process is valid when the umierlying target surface
is smooth.

When an input membership function is annihilated, all rules
using it are deleted from the fuzzy  rule base. For example, if
the membership function corresponding to }, = Z in the [eft-

hand rule table in Table 1[ is annihilated. then the rule table
after annihilatim WOLI!d  be as shown in I’able III.

An output membership function can likewise be annihilated.
In such a case, one of the remaining membership functions
must take its p lace in the ruie table. The choice,  ag:iin, is

m a d e  by a query to the training data base as was done for
input membership function fusi{m.

After annihilation, the membership parameters can be fur-
ther adapted using the training dat:l. Additional annihilatitm
and/or fusi(m might subsequently result.

(‘. F:.wlplt’s

We illustr:itc  the process t)f membership function lusi(m and
:Innihilatit)rr with two examples. I’hc Iirst is a proof’ t~f principle
w h e r e i n  c(mvergence  is to a s{)luti(m km)wn t[) be optinml.
The second uses acfaptatitm to fit a given target surface W e
LIscd the  parameters , J – z ;Ind ~ : ().~ t’(~r input membership
Iuncti(lns  amf q : ().95 f~lr the (mtput,  ltcration  was pcrf(mmxi

until J 1’/1,’ % 10- ‘~. In cases where a membership function
could either be fused or annihilated, annihilation was given
priority.

1) Con}v’rgetlce  to (~ Known  So/u[ion:  In this example, the
target  membership functimrs  shmvrr in Fig. 6 were used. The
target rule table is shown in Table IV. Using a universe of
discourse on [– 1, 1], the membership functions are indexed
from I for large negative numbers upward, The largest index
corresponds to large positive numbers.

A total of 500 training data points were randomly generated
from these target functions.

Overdetermined  initialization is shown in I:ig. (i(b) with
a rule table shown in Table V. Input membership functions
arc spaced evenly. Spacing of output membership functions
is determined from a histogram of the training data target
\alues.  I’he histogram is divided into inter\rals  of equal area.
T’he ntrmber  of intervals is chosen to be eclual to the number
of output membership functions. The rnemrs U( the output
membership functions are places at the boundaries of these
intervals.

I’he rcsuh of the first stecpe$t descent adaptation is shown
in Fig, fr(c). Compare this t{) f:ig. 6(d).  The two left most
membership functions for .r (top plt)t) fuse. The third fuse.
“1’he third  membership functi(m  for r is annihilated, etc. For
(tic tmtput. two nwmbership  functi(ms  are annihilated. The rule
t:ible bccxmws that shown in I’able V1.

I’fw nwmbcrship  func(i(ms  in f~ig. 6(d) are further trained.
‘1’tw result is shown  in I:Ip,.  6(cJ. Ct)n\pare this  to Fig. 6(1-).
wtwrc  ttmr input nwmbership  Functi{ms art  annihil:ited. The
resul ts  of F’Ig, 6( O are ad:ipted and c~mvcrgc  tt~ the result
shiwvn in Frg. 6(:).  As Ciin be seen in Fig. 6(h), two n~(]re input
nlcnlb~’rsttip Iunc’ti{ms  arc annihilated. Further  itc-r:ltion yiclcfs
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Fig. 6(i).  I:or!/(rl~iddle  pl{)t),  tt~reen~el~~bcrship  lunctit>nsfu\e
to two nwmberstlip  functions [see F’ig.  6(j)].  The fuzzy rule
table corresponding to Fig. 6(j) is :is shown inl’uble  VII. The
results in Fig. 6(j) arc :id:lpt~cl  t{) th{)se sh~lv.,n in Fig. (r(k).

Fusion {~ccurs as shown in Fig. 6(l). Additi(m:il  iid:tptati(m
results in the middle two membership functi{ms for v (middle
plot) shown in Fig. (i(m) to be gr:iphically  indistir~~llish:  ible.

They  arc fused  in Fig. 6(n). The rule t:hlc is now ex~lctly the
target  t:hle in T:ible IV. T h e  irrpu[ menlbcrsl]ip  lunctit~ns :ire

(:1) (b)
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F’lg. I  I .  Illus[r.ition  o f  the process of mcmhershlp functlm annihilati(~n.
When the menlhcr.hip  function, II: ( t’ ), twconw nmo~!  with  re.pcc( to an
mljacent nwmtwr>  hip t’unc(iun, it cun k annihil:itccl

is shown in Fig. 8(b). A total of ten steps of iteration followed
by fusion and annihilation were required prior to convergence.
The results are shown in Figs. 7(b) and 8(c). Convergence
mean square error is shown in Fig. 9. Between odd and even
steps (e.g., 3 and 4), error is reduced by steepest descent.
Between the even and odd steps (e.g., 4 and 5) fusion and
annihikition  are applied, generally resulting in an increase in
error.

The final rule table is shown in Table Vlll.  The number
of rules has been reduced from 441 (2 l‘) to 169 ( 13Z ). The
carxlinality  of’ [he set of consequent has been reduced from
8 to 5.

V. C’ONCitl SION”

We have considered a new technique for adaptation of
luz./.y  membership !unctions in a [LIxzy inference system. The
technique relies upon the isolati(m  of the specific membership
Iunctitm that umtributed h) the final decisi(m, folltwcd  by the

‘l,\tll 1: Vlll
tl\\l R(  II I !1111 I(IR l.\\ \!l>l I :

Y 1 ~ J ‘~ 5 6 ~ ~ ~ 10 11 12 ‘ 1~
r
1 3 4 4 3 2 2 3 4 4 3 2 2 3
2 4 s .5 4 3 3 4 5 5 4 3 3 4

3 4 5 5 4 3 3 4 5 5 4 3 3 4
4 3 4 4 3 2 2 3 4 4 3 2 2 3
5 2 3 3 2 1 1 2 3 3 2 1 1 2
6 2 3 3 2 1 1 2 3 3 2 1 I 2
7 3 4 4 3 2 2 3 4 4 3 ‘2 2 3
8 4 5 5 4 3 3 4 5 5 4 3 3 4
9 4 5 5 4 3 3 4 5 5 4 3 3 4
10 3 4 4 3 2 2 3 4 4 3 2 2 3
11 2 3 3 2 1 1 2 3 3 2 1 1 2
12 2 3 3 2 1 1 ‘2 3 3 ‘2 1 1 2
13 3 4 4 3 2 2 3 4 4 3 2 2 3

updating of this functim’s parameters using steepest descent.
The error measure used is thus b:ickpropagated  from output
to input, through the nlin and rn;ix operators used during
the inference stage. This was shown to be feasible because
the operations of ltlit~ and nl:~x are continuous differentiable
functions and, therefore, can be placecl in a chain of partial
derivatives for steepest clescent backpropagatimr  adaptation.
More interestingly, it was shown the partials  of rnin and rllax
(or :tny other order statistic, for that miitter)  act as “pointers”
with the result that only the function that gave rise to the mill
or r[lax is adapted; the others are not. We applied this property
to the fine tuning of membership functions of fuzzy n~ill-max
decision processes and illustrated with an estimation example.

Membership functirms  c:in be pararmeterized  in wtiys other
than those considered here as well. In general, the shape
of the membership functions of’ the control action can be
used to assess the quality of the roles. A strong single
peak in the membership function signifies the presence of a
dominant control rule; two distinct strong peaks are a sign
of the existence of contradictory rules; and a very low or
weak membership value of the maximum of the membership
function indicates that some rules are missing, and the rule
database is incomplete [28]. Thus, parameteriz.ing the peak
value of the membership function, in addition to its mean
and variance, can provide further improvements in the fuzzy
control process.

We also looked at ad:ipti\Je pruning of fu~z.y inference
systems Lis a solution to the problem of overdetermirration  in
fu~z,y systerms. This resulted in ii reduced-complexity system
with simil:ir or better performance.

N<,{lh }l(,ll.l {/{1,  }9s$.
[II ‘1 L1, IIL[. [.,1 >N,r,l<ll ,x,r, \, PtL, /,),  (’(),1 /!()/ (“.!,llhrl,lgc.  hi,\ N1l’1
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